Year 3 Stage 1	Year 3 Stage 2	Year 3 Stage 3 MET	
I can count on in 50s \& 100s from zero*	I can count on in 4 s from zero*	I can count on in 8 s from zero*	
I can find 10 more than a given number	I can find 10 less than a given number	I can find 100 more or less than a given number	
I know the value of digits in HTO (3-digit numbers)	I can compare HTO numbers (3-digit numbers) using $\langle \&\rangle$	I partition HTO flexibly e.g. $146=100+40+6,146=130+16$	
I can estimate numbers using resources	I can represent numbers with resources	I can identify numbers shown using resources	
I can read \& write numbers to 1000 in numerals	I can read numbers to 1000 in words	I can write numbers to 1000 in words	
I can mentally add HTO and O e.g. $342+6$	I can mentally add HTO and \mathbf{T} e.g. $342+20$	I can mentally add HTO and \mathbf{H} e.g. $342+200$	
I can mentally subtract \mathbf{O} from HTO e.g. 345-8	I can mentally subtract T from HTO e.g. 345-30	I can mentally subtract \mathbf{H} from HTO e.g. 345-200	
I can add TO and TO using compact addition (with one carry)	I can add HTO and HTO using compact addition (with one)	I can subtract HTO and HTO using decomposition (with no exchange)	
I can estimate the answer to a calculation	I can use the inverse operation to check answers	I can solve problems, including missing number problems, using number facts, place value and more complex addition and subtraction	
I can recall $3 x$ tables facts off by heart	I can recall $4 x$ tables facts off by heart	I can recall 8 x tables facts off by heart	
I can derive division facts from $3 x$ table	I can derive division facts from 4 x table	I can derive division facts from 8 x table	
I can multiply 2-digit numbers by 2 using tables facts e.g. 34×2 and know that I am doubling	I can multiply 2-digit numbers by 3 and 4 using tables facts e.g. $23 x$ 4	I use doubling and x 10 to solve multiplication problems mentally e.g. $20 \times 16=16 \times 10 \times 2$ [Distributive Law]	
I can multiply a whole number by 10 by moving the digits one place to the left	I know I cannot change the order of division when solving problems.	I use division facts to derive related facts e.g. $6 \div 3=2$ so $60 \div 3$ $=20$	
I can use partitioning to solve TO $\times \mathbf{0}$ e.g. $24 \times 6=(20 \times 6)+(4 \times 6)$ [Distributive Law]	I use a grid to record $\mathbf{T O} \times \mathbf{O}$	I can solve $\mathbf{T O} \div \mathbf{O}$	
I can solve simple scaling problems, e.g. draw a wall four times as high	I can solve correspondence problems in which n objects are connected to m objects e.g. 3 hats, 4 coats. How many different outfits?	I can solve problems where I choose which operation to use (from $+,-, x, \div)$	
I can count up in tenths from 0 to 2	I can count down in tenths from 2 to 0	I can divide 1-digit numbers/quantities by 10 e.g. 4 pizzas divided between 10 people	
I can divide an object into ten equal parts	I can find fractions of sets of objects e.g. $\frac{2}{3}$ of $30, \frac{2}{5}$ of 25	I can show equivalent fractions using diagrams e.g. $\frac{2}{4}=\frac{3}{6}$	
I can find $\frac{1}{10}$ of a set of objects	I can add fractions with the same denominator e.g. $\frac{5}{7}+\frac{1}{7}=\frac{6}{7}$	I can subtract fractions with the same denominator e.g. $\frac{5}{7}-\frac{1}{7}=\frac{4}{7}$	
I can compare unit fractions e.g. $\frac{1}{4}<\frac{1}{3}$ I can compare and order fractions with the same denominator e.g. $\frac{1}{6}, \frac{3}{6}, \frac{5}{6}$	I can order unit fractions on a numberline e.g $\frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{3}{4}$	I can solve problems using all fraction knowledge	

[^0]
Mathematics Assessment Criteria: Year 3 denotes MET + Mastery Indicators

I can measure length using millimetres (mm), centimetres (cm) and metres (m)	I can measure mass in grams (g) and kilograms (kg)	I can measure volume/capacity in millilitres (ml) and liters (I)
I can compare length written in ' m ' or ' cm ' e.g. 1.24 m is longer than 1.02 m	I can compare and add together lengths or mass e.g. $234 \mathrm{~g}+312 \mathrm{~g}$	I can compare and add and subtract measures ($\mathrm{m} / \mathrm{cm} / \mathrm{mm} / \mathrm{kg} / \mathrm{g} / / \mathrm{ml}$) e.g. $345 \mathrm{~m} /-212 \mathrm{~m} /$
I can measure the perimeter of regular 2 D shapes	I can find the total when using $£$ and p (up to $£ 10.00$)	I can find the change when using $£$ and p (up to $£ 10.00$)
I can tell the time from an analogue clock	I can tell the time from an analogue clock (with Roman numerals)	I can tell the time from an 24-hour analogue clock
I can estimate a minute	I can read time to the nearest minute	I can record times in seconds, minutes and hours and compare them
I know there are 60 seconds in a minute	I know there are 365 days in one year (366 in one leap year)	I know the number of days in each month
I can draw 2D shapes using a ruler e.g. square, oblong, right-angled triangle,	I can model 3D shapes from materials	I can recognise and name 3D shapes in different orientations and describe them
I know 2D shapes are polygons	I can identify regular and irregular polygons	I know 3D shapes are polyhedra
I can find and draw right angles in 2D shapes	I know two right angles make a half turn	I know three right angles make a three-quarters of a turn
I know four right angles make a whole turn		I know if an angle is greater (obtuse) than or less than (acute) a right angle
	I can find horizontal and vertical lines	I can find pairs of perpendicular and parallel lines
I can record information in a pictogram	I can record information in a table/chart and answer questions	I can record information in a bar chart and answer questions
I can answer questions about pictograms	I can solve one-step problems e.g. How many more? How many fewer?	I can solve two-step problems with scaled bar charts e.g. 2, 5, 10 units per cm

mastery indicators

[^0]: * up to ten multiples of the number

