Year 5 Stage 1	Year 5 Stage 2	Year 5 Stage 3 MET	
I can read and write numbers to at least 1,000,000 (7-digits) and determine the value of each digit	I can order numbers to at least 1,000,000	I can compare numbers to at least 1,000,000	
I can count forwards in steps of powers of 10 e.g. $10,100,1000$, 10,000 from zero	I can count forwards in steps of powers of 10 e.g. 10, 100, 1000, 10,000 from any given number	I can count backwards in steps of powers of 10 e.g. 10, 100, 1000, 10,000 from any given number	
I understand negative numbers in context e.g. temperature	I can count forwards from negative whole numbers, through zero, to positive whole numbers e.g. $-4,-3,-2,-1,0,1,2,3,4,5, \ldots$	I can count backwards from positive whole numbers, through zero, to negative whole numbers e.g. 3, 2, 1, $0,-1,-2,-3,-4$..	
I can round any number to 1,000,000 to the nearest 10, 100	I can round any number to 1,000,000 to the nearest 1000, 10,000	I can round any number to 1,000,000 to the nearest 100,000	
I can find the rule to describe number sequences e.g. $3,3 \frac{1}{2}, 4,4 \frac{1}{2} \ldots$ is add $\frac{1}{2}$ or $1.5,1.3,1.1,0.9$... is subtract 0.2	I can solve project-based problems that involve the objectives above	I can solve problems that involve the objectives above.	
I can solve number problems that involve the objectives above	I can read Roman numerals up to 1,000 (M)	I can read years written in Roman numerals e.g. $M M X V=2015$	
I use formal written methods to add whole numbers with more than 4 digits	I can use formal written methods to subtract whole numbers with more than 4 digits with 2 or more exchanges		
I can add numbers mentally with increasingly large numbers using place value to help e.g. $12,462+2300=14,762$		I can subtract numbers mentally with increasingly large numbers e.g. $12,462-2,300=10,162$	
I can solve addition multi-step problems in contexts, deciding which operations and methods to use and why	I can solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why	I can use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy	
I can multiply ThHTO $\mathbf{x} \mathbf{O}$ using short multiplication	I can multiply TO x TO using long mulitplication	I can multiply HTO x TO using long multiplication	
	I can multiply numbers mentally, using known facts e.g. 32×7	I can divide numbers mentally, using known facts e.g. $210 \div 60$	
I can divide ThHTO $\div \mathbf{O}$ using short division e.g. $2352 \div 6$	I can divide ThHTO $\div \mathbf{O}$ using short division and interpret remainders appropriately for the context e.g. How many standard egg-boxes will you need to pack 1000 eggs?	I can divide numbers $\mathbf{T h H T O} \div \mathbf{O}$ and express remainders as a fraction or decimal e.g. $98 \div 4=24 \mathrm{r} 2=24 \frac{2}{4}=24.5$	
I can multiply and divide whole numbers by $10,100,1,000$ using a Place Value Slider to help	I can multiply and divide whole numbers by 10, 100, 1000 e.g. $134,500 \div 100=1345$	I can multiply and divide decimal numbers by $10,100,1000$ e.g. $2764.5 \div 10=276.45$	
I can identify multiples of 1-digit numbers e.g. 49 is a mutliple of 7	I can find factor pairs of a number e.g. $1 \& 12,2 \& 6,3 \& 4$ for 12	I can identify common factors of two numbers e.g. 6 is a factor of 18 and 60	
I use the terms factor and multiple when describing composite (non-prime) numbers e.g. "10 is a multiple of 2, 5 and 10. Its factors are 1, 2, 5 and $10^{\prime \prime}$.	I can explain prime numbers using the terms factor and multiple e.g. 13 is a prime number because it has only two factors. It's a multiple of only 1 and 13.	I can explain and calculate prime factors for numbers to 30 e.g. The factors of 18 are $1,2,3,6,9,18$. So the prime factors are 2 and 3 because $2 \times 3 \times 3=18$	
I can represent square numbers using resources e.g. counters	I can recognise square numbers and the notation for squared numbers (${ }^{2}$)	I can build and recognise cube numbers and the notation for cubed numbers (${ }^{3}$)	
I can work out if a number up to 19 is prime	I can recall prime numbers up to 19 e.g. $2,3,5,7,11,13,17,19$	I can establish whether a number up to 100 is prime	
I can use the equals sign to show equivalence e.g. $13+24=12+$ 25	I can explain how the equal sign shows equivalence	I can solve missing number problems e.g. $33=5 \times$?	
I can solve multiplication problems involving brackets e.g. 5(4+7)	I can construct equivalence statements e.g. $4 \times 35=2 \times 2 \times 35$	I can construct equivalence statements with squared numbers $\text { e.g. } 3 \times 270=3 \times 3 \times 9 \times 10=9^{2} \times 10$	
I can choose which operation to use to solve problems involving addition, subtraction, multiplication and division.	I can solve problems involving multiplication including using factors and multiples, squares and cubes	I can solve problems involving division including using factors and multiples, squares and cubes	
I can solve problems using a combination of addition, subtraction, multiplication and division.	I can solve problems involving multiplication and division including scaling by simple fractions and problems involving simple rates e.g. Adapt a recipe for $1 / 4$ of the amount	I can solve problems involving addition, subtraction, multiplication and division and a combination of these, understanding the meaning of the equals sign	

I can compare fractions whose denominators are all multiples of the same number	I can order fractions whose denominators are all multiples of the same number	
I can identify and write equivalent fractions of a given fraction represented visually including tenths and hundreds e.g. $\frac{4}{10}=\frac{40}{100}$	I can recognise mixed numbers and improper fractions e.g. $3 \frac{1}{2}$ or $\frac{15}{4}$ and convert from one to the other	I can write mathematical statements using mixed and improper fractions e.g. $\frac{2}{5}+\frac{4}{5}=\frac{6}{5}=1 \frac{1}{5}$
I can add and subtract fractions with the same denominator	I can add fractions with denominators that are multiples of the same number e.g. $\frac{1}{4}+\frac{1}{8}$	I can subtract fractions with denominators that are multiples of the same number e.g. $\frac{4}{6}-\frac{1}{3}$
I can read and write decimal numbers as fractions e.g. $0.71=\frac{71}{100}$	I can multiply proper fractions by whole numbers supported by different representations e.g. $\frac{1}{3} \times 6$	I can multiply mixed numbers by whole numbers supported by different representations e.g. $2 \frac{2}{3} \times 4$
I can recognise and use thousandths and relate them to tenths	I can recognise and use thousandths and relate them to hundredths	I can recognise and use thousandths and relate them to decimal equivalents
I can read and write numbers with up to 3 decimal places	I can order numbers with up to 3 decimal places	I can compare numbers with up to 3 decimal places
I can round decimals with 2 decimal places to the nearest whole number	I can round decimals with 2 decimal places to 1 decimal place (1dp)	I can solve problems involving number up to 3 decimal places
I recognise the per cent symbol (\%) and understand that percent relates to 'number of parts per 100'	I can write percentages as a fraction with a denominator 100 e.g. $\frac{63}{100}=63 \%$	I can write percentages as a decimal e.g. $38 \%=0.38$
I can solve problems which require knowing decimal equivalents of $1 / 2,1 / 4,1 / 5,2 / 5,4 / 5$	I can solve problems which require knowing percentage equivalents of $1 / 2,1 / 4,1 / 5,2 / 5,4 / 5$	I can solve problems which require knowing fractions with a denominator of a multiple of 10 or 25
I can convert between different units of length e.g. $\mathrm{mm} \& \mathrm{~cm}, \mathrm{~cm}$ \& m, m \& m	I can convert between different units of mass e.g. grams \& kilogram	I can convert between different units of volume e.g. millilitres and litres
I can convert between centimetres and inches using the approximate equivalence of $2.54 \mathrm{~cm}=1$ inch	I can convert between kilograms and pounds using the approximate equivalence of $1 \mathrm{kilogram}=2.2$ pounds (mass NOT money)	I can convert between litres and pints using the approximate equivalence of 1 litre $=1.76$ pints
I can measure the perimeter of a shape made of rectangles in centimetres and metres	I can calculate and compare the area of rectangles (including squares), including using standard units, square centimetres $\left(\mathrm{cm}^{2}\right)$ and square metres (m^{2})	I can estimate the area of irregular shapes in square centimetres (cm^{2}) or square metres (m^{2})
I can calculate the perimeter of a shape made of rectangles when there are missing measurements	I can estimate the capacity of a container in millilitres and litres	I can estimate the volume of a cuboid made from $1 \mathrm{~cm}^{3}$ cubes
I can solve problems involving converting between units of time e.g. minutes to hours, days to weeks, weeks to months,	I can use all four operations to solve problems involving length and money with decimal notation, including scaling	I can use all four operations to solve problems involving mass and volume with decimal notation, including scaling
I can identify cubes and other cuboids from 2-D representations	I can identify prisms and pyramids from 2-D representations	I can draw a line to the nearest millimetre
I can know angles are measured in degrees	I can estimate and compare acute and obtuse angles	I can estimate and compare reflex angles
I can measure angles in degrees (${ }^{\circ}$) using a protractor	I can draw given angles using a protractor	I can distinguish between regular and irregular polygons based on reasoning about equal sides and angles
I can identify angles at a point and 1 whole turn (total 360°)	I can identify angles at a point on a straight line and half a turn (total 180°)	I know a quarter turn is 90° and a three-quarter turn is 270°
I can use the properties of rectangles to find missing lengths	I can use the properties of other quadrilaterals to work out missing lengths e.g. rhombus has 4 equal edges	I can use the properties of quadrilaterals to work out missing angles e.g. trapezium's interior angles add up to 360°
I can reflect a shape in a horizontal or vertical axis and describe its transformation knowing that its shape hasn't changed	I can translate a shape in the first quadrant and describe its transformation knowing that its shape hasn't changed	I can identify if a shape has been reflected or translated
I can complete, read and interpret information in tables, including timetables	I can solve problems by comparing data in a line graph	I can solve comparison, sum and difference problems using data in a line graph

