Year 6 Stage 1	Year 6 Stage 2	Year 3 Stage 3 MET	
I can read and write numbers up to 10000000 (ten million)	I can order numbers up to 10000000	I can compare numbers up to 10000000 and determine the value of each digit	
I can order negative numbers on a numberline	I can calculate intervals involving negative numbers across zero e.g. the interval between $\mathbf{- 6}$ and $\mathbf{7}$ is 13	I can solve problems involving negative nunbers in context e.g. temperature difference, profit/loss	
I can round any whole number accurately to 10000	I can round any whole number accurately to 100000	I can round any whole number accurately to 1000000	
I can solve number problems that involve rounding and place value	I can practical problems that involve place value \& rounding	I can create and solve number and practical problems that involve place value \& rounding	
I can round answers to the nearest $10,20,50$ or 100	I can estimate the answer to a calculation problem and determine, in the context of a problem, a degree of accuracy	I can perform mental calculations (+-), including with mixed operations and large numbers	
	I can divide ThHTO \div TO using long division with remainders	I can divide ThHTO \div TO using long division interpreting remainders as decimals	
I can multiply 0.th $\times \mathbf{0}$ e.g. $£ 1.42 \times 2=£ 2.84$	I can divide $\mathbf{T h H T O} \div$ TO using long division, interpreting remainders as fractions e.g. $432 \div 15=28 \frac{12}{15}$ or $28 \frac{4}{5}$ or by rounding depending on the context	I can use a written division method in cases where the answer has up to two decimal places	
I can perform mental calculations with mixed operations e.g. $(12 \times 6)+(8 \times 7)$	I can perform mental calculations with mixed operations and larger numbers e.g. (54×8) - 222	I can estimate to check answers to calculations and determine in the context of a problem, an appropriate degree of accuracy	
I can identify common factors of two numbers e.g. 5 and 7 are both common factors of 35 and 105	I can identify common multiples of two numbers e.g. common multiples of $\mathbf{4}$ and $\mathbf{6}$ are 12,24,36...	I can identify common prime numbers	
I can solve multi-step problems in contexts involving addition and subtraction, deciding which operations and methods to use and why	I can solve problems that involve all four operations	I use my knowledge of the order of operations to carry out calculations involving the four operations e.g. $(8-3)+5 \times 6=$ 35	
I can multiply and divide decimal numbers by $10,100,1000$ giving answers to three decimal places e.g. $23.6 \div 1000=0.024$	I can compare fractions with different denominators using < > = symbols	I can compare and order fractions with different denominators, including those greater than 1	
I can add fractions with different denominators and mixed numbers using equivalent fractions to help e.g. $\frac{1}{3}+\frac{1}{4}=\frac{7}{12}$	I can use common factors to simplify fractions e.g. $\frac{18}{30}$ simplifies to $\frac{3}{5}$ as 6 is a common factor	I can use common multiples to express fractions in the same denomination e.g. $\frac{1}{2}+\frac{1}{8}=\frac{5}{8}$	
I can subtract fractions with different denominators and mixed numbers using equivalent fractions to help e.g. $\frac{1}{3}-\frac{1}{4}=\frac{1}{12}$	I can multiply simple pairs of proper fractions e.g. $\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}$ writing the answer in its simplist form	I can divide proper fractions by whole numbers e.g. $\frac{1}{3} \div 2=\frac{1}{6}$	
I understand how fractions link to division e.g. $\frac{2}{5}$ is $2 \div 5$	I can calculate decimal equivalents for a simple fraction $\text { e.g. } \frac{3}{8}=0.375$	I can find percentages of quantities	
I know the fraction, decimal and percentage equivalents for all halves, quarters, fifths and tenths	I know the fraction, decimal and percentage equivalents for all sixths and eighths e.g. $\frac{5}{8}=0.625=62.5 \%$		
I can compare relative proportions by comparing the parts to the whole ["in every'] e.g. 3 red marbles in a bag of 10 compared to 7 red marbles in a bag of 20 .	I can solve problems with simple ratios ["for every"] e.g. share 10 sweets in the ratio 2:3	I can solve problems involving calculation of percentages e.g. 15% of 360 for a pie chart	
I can solve problems involving similar shapes where the scale factor is known or can be found	I can solve problems involving unequal sharing and grouping using knowledge of fractions and multiples e.g. $\frac{3}{5}$ of the class are boys		

[^0]
[^0]: *up to ten multiples of the number

